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Abstract

In simulating two-phase flows, interface normal vectors and curvatures are needed for modeling surface tension. In the
traditional approach, these quantities are calculated from the spatial derivatives of a scalar function (e.g. the volume-of-
fluid or the level set function) at any instant in time. The orders of accuracy of normals and curvatures calculated from
these functions are studied. A new method for calculating these quantities is then presented, where the interface unit nor-
mals are advected along with whatever function represents the interface, and curvatures are calculated directly from these
advected normals. To illustrate this new approach, the volume-of-fluid method is used to represent the interface and the
advected normals are used for interface reconstruction. The accuracy and performance of the new method are demon-
strated via test cases with prescribed velocity fields. The results are compared with those of traditional approaches.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In simulating two-phase flows, accurate modeling of surface tension effects is a challenging task. Non-phys-
ical velocities, commonly known as spurious or parasitic currents, are easily induced in a flow if the surface
tension force is not modelled properly. There are two sources of error when modeling surface tension [1]: the
approach to implementing (discretizing) the surface tension and the interface curvature calculation. Various
approaches have been presented to reduce or eliminate these errors (e.g. [2–4]). However, Francois et al. [1]
recently proposed a method for implementing surface tension into a volume-of-fluid (VOF) [5,6] model that
imposes an exact balance between the surface tension and pressure forces. In this method, because the surface
tension and pressure forces are treated consistently, no spurious currents are induced in a flow provided that
the interface curvature is exact.
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The focus of this paper then is on the calculation of interface normal vectors and curvatures. There are dif-
ferent methods available, but the most widely used technique is to calculate these quantities from the spatial
derivatives of the scalar function which is employed to represent a particular fluid or an interface in a multi-
phase flow. For instance, the gradient of the VOF function or the level set (LS) [7–9] function yields the nor-
mal to an interface represented by either of these. Then, by taking the divergence of the interface unit normal
vector, i.e. the second derivative of the VOF or LS function, the interface curvature is obtained. The accuracy
of this approach will be assessed later in this paper for both of these functions.

Calculating interface curvature from the VOF or LS function is a straightforward, although not necessarily
accurate, approach. There are other methods which are more accurate and sophisticated. For example, the
VOF-based height-function method [1,10,11] yields curvatures with second-order accuracy. In this method,
fluid ‘‘heights’’ are calculated from the volume fractions in the direction normal (or close to normal) to an
interface; the interface curvature is then obtained from the derivatives of the height function. However, this
method yields poor results [12] if an interface is not adequately resolved.

Other VOF-based methods for calculating interface curvature utilize curve fits of the volume fraction
data; the curvature is then calculated from the equation of the curve. For example, Poo and Ashgriz
[13] utilized a second-order polynomial to calculate curvatures in 2D. More recently, in a method known
as PROST [14], the data is fitted iteratively with a paraboloid in either 2D or 3D. Although this method
yields second-order accurate curvatures, the implementation is not straightforward, especially for compli-
cated interface geometries.

This paper introduces an entirely different approach to calculating interface normals and curvatures: the
interface normal vectors are advected along with the interface. The structure of the paper is as follows. First,
interface normals and curvatures calculated from the VOF and LS functions are evaluated. Then, the formu-
lation and an approach to implementing the new method are presented. Finally, the accuracy and the perfor-
mance of the new method are demonstrated via various test cases.

2. Normals and curvatures from VOF and LS functions

2.1. Volume-of-fluid method

In the VOF method, a scalar color function, f, defined as
f ð~xÞ ¼
1; ~x 2 fluid1

0; ~x 2 fluid2

�
ð1Þ
is used to represent fluid 1 in a two-phase system. The VOF function is discontinuous by definition. The dis-
cretized form of the VOF function is the fraction of a numerical cell volume V occupied by fluid 1, and is de-
fined as
F ¼ 1

V

Z
V

f dv ð2Þ
It then follows that F = 1 in a cell fully occupied with fluid 1, F = 0 in a cell filled with fluid 2, and 0 < F < 1 in
a cell containing a portion of the interface.

The interface is tracked via the following advection equation:
of
ot
þ~u � rf ¼ 0 ð3Þ
The interface unit normal vector can be calculated from the gradient of f:
n̂ ¼ rf
jrf j ð4Þ
and the curvature of the interface can then be computed as
j ¼ �r � rf
jrf j

� �
ð5Þ
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For a 2D interface between two fluids, depicted in Fig. 1a, the discretized VOF function representing fluid 1
is shown in Fig. 1b. As can be seen, the volume fractions vary sharply from zero to one across the interface.
This discontinuous behavior makes it difficult to accurately evaluate the first and second derivatives of f, which
leads to inaccurate interface normals and curvatures. Smoothing the f field prior to evaluating $f improves the
values [12]. We assess the accuracy of n̂ and j calculated from f in Section 2.3. But first, we briefly present the
LS method, which is known to yield more accurate normals and curvatures.

2.2. Level set method

In the LS method, the interface is represented by a smooth function / – called the LS function; for a
domain X, / is defined [15] as a signed distance to the boundary (interface) oX
Fig. 1.
represe
j/ð~xÞj ¼ minðj~x� ~xI jÞ for all ~xI 2 oX ð6Þ

implying that /ð~xÞ ¼ 0 on oX. Choosing / to be positive inside X, we then have
/ð~xÞ ¼
> 0; ~x 2 X

0; ~x 2 oX

< 0; ~x 62 X

8><
>: ð7Þ
For the 2D interface depicted in Fig. 1a, the discretized LS function, defined at the center of each cell, is shown
in Fig. 1c.

The unit normal vector and curvature at any point on the interface are calculated from / by
n̂ ¼ r/
jr/j ð8Þ
and
j ¼ �r � r/
jr/j

� �
ð9Þ
Since / is smooth and continuous across the interface (see Fig. 1c), $/ can be calculated accurately.
In the LS method, the motion of the interface is defined by the following advection equation:
o/
ot
þ~u � r/ ¼ 0 ð10Þ
When / is advected, the / = 0 contour moves at the correct interface velocity; however, contours of / 6¼ 0 do
not necessarily remain distance functions. This can result in an irregular / field that in turn leads to problems
(a) A 2D interface between fluids 1 and 2, (b) the discretized VOF function representing fluid 1 and (c) the level set function
nting distance to the interface.
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with mass conservation. To rectify this problem reinitialization methods have been developed, which restore /
to a signed distance function without changing the / = 0 contour.

There are different methods for recalculating a signed distance function [16]. The most popular is an alge-
braic approach [17]; a steady state solution is obtained to the following PDE at regular intervals:
/s þ Sð/0Þðjr/j � 1Þ ¼ 0 ð11Þ

s is a pseudo-time, /0 is the LS function prior to reinitialization, and S is the sign function. Although this
approach improves conservation of mass considerably, it fails to achieve it exactly. Furthermore, an important
practical question, posed by Peng et al. [18], is that of how often Eq. (11) should be solved, which has no sim-
ple answer [19].

To further alleviate the mass conservation problem, Nourgaliev et al. [20] showed that reducing the spatial
discretization errors in Eq. (10), by either increasing the accuracy of the spatial discretization schemes and/or
locally refining the mesh, improves mass conservation. Gómez et al. [19] too showed that using a locally
refined LS approach improves mass conservation. The Fast Marching method [21] is another technique for
calculating distance functions, that improves mass conservation properties. And as an example of a ‘‘hybrid’’
method (the LS method coupled with another approach) to address the mass conservation issue, the particle
level set method [22] advects marker particles alongside the LS field, and uses the particles to reinitialize the LS
function in under-resolved regions.

It must be noted that none of the above techniques exactly conserve mass. To eliminate mass conservation
errors entirely, another hybrid scheme, the ‘‘coupled level set and VOF’’ (CLSVOF) method [23–25] has been
developed, that advects the VOF function along with the LS function, and reinitializes the LS function from
the reconstructed VOF field. The CLSVOF method achieves exact mass conservation if it is based on an
exactly conservative VOF approach. For this reason, the CLSVOF method of Son and Hur [25] was imple-
mented for this study. The VOF function is advected by the method of Youngs [26], which is volume
conserving.

In the CLSVOF method, the LS and VOF functions / and f are advected from time n to n + 1; the inter-
face, approximated as piecewise linear, is then reconstructed from f nþ1 using the interface normal vectors cal-
culated from /nþ1. / is then reinitialized by calculating the distance between any cell center (where / is
defined) and the VOF interface. In our implementation, the spatial derivatives in Eq. (10) were discretized
using a second-order accurate, essentially non-oscillatory (ENO) scheme and the forward Euler scheme was
used to discretize the temporal derivative.

2.3. Errors in n̂ and j calculated from VOF and LS functions

As a test problem, consider a circle of radius 0.15 centered at (0.5,0.5) in a 1 · 1 domain; the normals and
curvatures are calculated from the VOF and LS functions. For any quantity q, the maximum error l1 and the
average error l1 are defined as follows:
l1 ¼ maxjjðqcal: � qexactÞjj ð12Þ

l1 ¼
1

N

XN

j¼1

jðqcal: � qexactÞjj ð13Þ
The circle is defined on a uniform mesh, and n̂ and j are calculated at cell vertices and cell centers, respectively.
A second-order central differencing scheme is used to calculate $f and $/ to obtain n̂ via Eqs. (4) and (8). A
second-order operator is also used to calculate r � n̂ to compute j. The l1 and l1 errors are measured only in
the N interfacial cells (0 < F < 1).

To evaluate n̂ and j from the VOF function, we first initialize the VOF field using recursive local mesh
refinement. We refine to 16 levels in interfacial cells, which yields the volume fractions to machine precision.
Further subdivisions have no significant effect on the results.

The errors associated with n̂ calculated from the VOF function at different mesh resolutions are presented
in Table 1. As can be seen, there is a constant error associated with n̂, which does not vanish as the mesh is
refined, i.e. the normals are zero-order accurate in space, n̂cal: ¼ n̂exact þOðDx0Þ.



Table 1
The errors associated with the unit normal vectors calculated at cell vertices from the VOF function, for a circle of radius 0.15 centered at
(0.5,0.5) in a 1 · 1 domain, at different mesh resolutions

Dx l1 Order l1 Order

1/16 0.1520 0.0694
0.62 0.94

1/32 0.0992 0.0362
�0.14 �0.14

1/64 0.1091 0.0398
0.20 0.04

1/128 0.0951 0.0388
�0.12 �0.02

1/256 0.1030 0.0392
�0.09 0.04

1/512 0.1093 0.0382
0.07 �0.02

1/1024 0.1043 0.0386
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The errors in curvatures obtained from the VOF function are presented in Table 2. It can be seen that both
l1 and l1 grow linearly when increasing the mesh resolution, jcal: ¼ jexact þOð1=DxÞ. Cummins et al. [12]
reported a similar result, although using a different smoothing kernel. This is a serious drawback of the
VOF function. Contrary to what one would hope, the accuracy of curvatures deteriorates with increasing
mesh resolution. Although converging curvatures calculated from a smoothed VOF function have been
reported (see [12] for details), they become computationally expensive as the resolution increases.

To assess n̂ and j from the LS function in a CLSVOF context, we first initialize the VOF field exactly as
described above, and then calculate / via the reinitialization procedure, where the normals used in the VOF
reconstruction are obtained from the exact /. Note that if we were to use the exact / to calculate n̂ and j, we
would only be assessing the accuracy of the operators used for calculating these quantities; this would not
reflect the discretization errors associated with the reinitialization of /.

The errors associated with the reinitialized /, and the corresponding order of accuracy, are presented in
Table 3. The errors in n̂ and j calculated from / via Eqs. (8) and (9) are presented in Tables 4 and 5, respec-
tively. As the results show, the reinitialized / is second-order accurate, the unit normals are first-order accu-
rate, and the curvatures are zero-order accurate (which implies that a constant error, ranging from 10% to
20%, is always associated with j regardless of the mesh resolution). These errors are not unexpected because
n̂ � r/ and j � r � r/.
Table 2
The errors associated with curvatures calculated from the VOF function, for a circle of radius 0.15 centered at (0.5,0.5) in a 1 · 1 domain,
at different mesh resolutions

Dx l1 Order l1 Order

1/16 1.09 0.49
�0.41 �0.62

1/32 1.44 0.75
�1.32 �0.86

1/64 3.59 1.36
�1.04 �0.91

1/128 7.38 2.57
�1.18 �0.88

1/256 16.75 4.73
�1.03 �0.93

1/512 34.14 8.99
�1.01 �0.99

1/1024 69.00 17.80



Table 3
The errors associated with the reinitialized LS function / for a circle of radius 0.15 centered at (0.5,0.5) in a 1 · 1 domain, at different mesh
resolutions

Dx l1 Order l1 Order

1/16 3:03� 10�3 1:14� 10�3

2.27 2.04
1/32 6:30� 10�4 2:78� 10�4

1.71 2.46
1/64 1:93� 10�4 5:06� 10�5

1.86 1.68
1/128 5:33� 10�5 1:58� 10�5

2.03 2.19
1/256 1:31� 10�5 3:46� 10�6

1.88 2.11
1/512 3:54� 10�6 8:00� 10�7

1.82 1.88
1/1024 1:00� 10�6 2:18� 10�7

Table 4
The errors associated with the unit normal vectors calculated at cell vertices from the LS function /, for a circle of radius 0.15 centered at
(0.5,0.5) in a 1 · 1 domain, at different mesh resolutions

Dx l1 Order l1 Order

1/16 6:16� 10�2 1:58� 10�2

1.68 2.38
1/32 1:92� 10�2 3:03� 10�3

0.96 0.35
1/64 9:85� 10�3 2:38� 10�3

0.61 0.83
1/128 6:47� 10�3 1:34� 10�3

0.93 1.03
1/256 3:39� 10�3 6:56� 10�4

1.02 1.17
1/512 1:67� 10�3 2:92� 10�4

0.70 0.99
1/1024 1:03� 10�3 1:48� 10�4

Table 5
The errors associated with curvatures calculated from the LS function /, for a circle of radius 0.15 centered at (0.5,0.5) in a 1 · 1 domain,
at different mesh resolutions

Dx l1 Order l1 Order

1/16 0.5472 0.2963
1.55 1.58

1/32 0.1875 0.0991
�1.79 �0.51

1/64 0.6481 0.1407
0.61 �0.11

1/128 0.4234 0.1518
�0.43 �0.02

1/256 0.5689 0.1537
�0.29 0.34

1/512 0.6963 0.1215
0.11 �0.01

1/1024 0.6453 0.1227
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Note that the order of accuracy of the CLSVOF method used in this work is consistent [27] with the accu-
racy of a similar model developed by Sussman and Puckett [24]. Although n̂ and j calculated from the LS
function are much more accurate than those calculated from the VOF function, neither approach yields con-
verging curvatures.

Finally, it should be noted that these results only apply to the LS function in a CLSVOF context. Other
methods for constructing a distance function (discussed in Section 2.2) may yield converging curvatures, even
with second-order accuracy; however, such methods will fail to exactly conserve mass.

The objective, then, of this work was to devise a method to calculate second-order accurate, or at least con-
verging, curvatures. Such a method is presented next, in which interface normals are advected with the flow,
and curvatures are calculated directly from the advected normals.

3. Advecting normals: a new method for calculating interface normals and curvatures

3.1. Mathematical fundamentals

As reviewed earlier, the evolution of the LS function is governed by Eq. (10)
o/
ot
þ~u � r/ ¼ 0
Defining ~N ¼ r/ as the vector normal to the contours of /, the above equation can be rewritten as
o/
ot
þ~u � ~N ¼ 0 ð14Þ
Taking the gradient of Eq. (14), we obtain
o~N
ot
þr ~u � ~N

� �
¼ 0 ð15Þ
Eq. (15) is the advection equation for normals. In 2D Cartesian coordinates, Eq. (15) results in the following
equations:
oN x

ot
þ o

ox
ðuNx þ vN yÞ ¼ 0 ð16Þ
and
oN y

ot
þ o

oy
ðuN x þ vN yÞ ¼ 0 ð17Þ
Next, consider the following lemma [28]:
Let un ¼~u � r/ be the normal velocity of each level set, and set /ð~x; 0Þ to be the signed distance function. Then

/ remains a signed distance function if and only if run � r/ ¼ 0.

The condition run � r/ ¼ 0 can be also expressed as
rð~u � ~NÞ � ~N ¼ 0 ð18Þ
Note that jr/j ¼ j~N j ¼ 1. Now, from Eq. (15) we obtain
o~N
ot
� ~N þrð~u � ~NÞ � ~N ¼ 0 ð19Þ
or
1

2

o

ot
ðj~N j2Þ þ rð~u � ~NÞ � ~N ¼ 0 ð20Þ
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If the condition in the above lemma is to be met (i.e. if Eq. (18) is to be satisfied), then we have
o

ot
ðj~N j2Þ ¼ 0 ð21Þ
and since initially jr/j ¼ j~N j ¼ 1, then ~N remains a unit vector (this can be also deduced from the above lem-
ma directly). In other words, if ~N is initially a unit vector and we solve Eq. (15) to advect ~N while satisfying Eq.
(18), then ~N remains a unit vector. In a sense, satisfying Eq. (18) is similar to reinitialization in the LS method.
The method for satisfying Eq. (18) is presented in Section 3.3.

In our proposed method, interface normals are advected via Eq. (15) along with the interface, although the
methods for advecting normals and the interface are independent. We use the VOF method to advect the inter-
face but this is simply our choice of implementation, and other methods could be used. Eqs. (3) and (15) are
solved side by side; however, for the VOF reconstruction we use the advected normals rather than normals
calculated from $f. The VOF function and ~N are prevented from decoupling by satisfying Eq. (18) and by
the method of defining ~N (Section 3.2).

The interface curvature at any point is then obtained directly from the advected ~N (from this point on we
use ~N instead of n̂)
j ¼ �r � ~N ð22Þ

Before presenting the numerical methodology, it must be noted that the idea of advecting interface normals

may appear similar to the CIP (cubic interpolated polynomial or constrained interpolation profile) method
[29,30], where a color function and its spatial derivatives are advected. However, our proposed method is dif-
ferent for the following reasons:

� In the proposed method, interface unit normal vectors are advected rather than the spatial derivatives of the
VOF function. Although unit normals can be obtained from VOF derivatives, they are not the same. Note
that normals are initialized as unit vectors and through a special procedure we ensure that they remain unit
vectors. In the CIP method, no constraint on the derivatives is applied.
� Rather than advecting the fluid indicator function, in the CIP method a transformed function is advected to

minimize numerical diffusion. The transformation is usually via a tangent function [30], and an inverse
transform is used to restore the original variable. The tangent transformation performs well only when used
with high-order (third or higher) schemes; otherwise, significant dispersion or dissipation errors occur. In
our method, we advect the actual indicator function.
� Different than the CIP method, the proposed method involves interface reconstructions that are used for

advecting mass (and momentum when implemented in a flow solver). The CIP method does not exactly
conserve mass [31] when used for modeling two-phase flows. Although a mass conservative version of
the CIP method has been reported [32], to the best of our knowledge it has not been applied to two-phase
flows. The proposed method is inherently mass conservative because it utilizes a volume-conserving VOF
method.

The numerical methods for solving Eq. (15) are detailed next.

3.2. Numerical methodology

Eq. (15) represents an initial value problem, where the initial value of ~N is determined from the initial geom-
etry of an interface. We directly solve the conservative form of Eq. (15) (in the CIP method the evolution equa-
tion for derivatives is solved by splitting the equation into ‘‘advection’’ and ‘‘non-advection’’ parts). The
temporal derivative of Eq. (15) is discretized using the third-order total variation diminishing (TVD)
Runge–Kutta method [33]. The spatial derivatives in Eq. (15) are discretized using a weighted essentially
non-oscillatory (WENO) scheme [15]. However, before evaluating the spatial derivatives, Eq. (18) is satisfied,
as detailed in the next section.

In our implementation, normal vectors ~N are located at cell vertices (see Fig. 2); normal vectors at cell cen-
ters, which are required for interface reconstruction, are obtained by interpolation. As shown in Fig. 2, we



Fig. 2. Normal vectors are defined at cell vertices in a 3Dx band around the interface. The 6 · 6 stencil ABCD is used to extend ~u � ~N
around point O.
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define ~N in a 3Dx band around the interface defined by the VOF function. Although ~N are only required at the
vertices of interfacial cells in order to reconstruct interfaces, when implemented in a flow model, one might
require curvatures in neighboring cells as well. Thus, the band spans at least three cells.

3.3. Extension algorithm

To satisfy Eq. (18) we use an ‘‘extension’’ algorithm. This algorithm extends~u � ~N off the interface in both
directions such that the gradient is zero normal to the interface, oð~u � ~NÞ=o~N ¼ 0. This idea was introduced by
Zhao et al. [28] and further developed by Chen et al. [34]. It was used, for example, by Peng et al. [18] to extend
interface velocity and by Smereka [35] to extend surface curvature away from the interface. We adopt the same
algorithm [18] here but newer extension algorithms [36,37] are also applicable.

In this algorithm, the following hyperbolic PDE is solved to steady state:
oq
os
þ Sð~xÞ~N � rq ¼ 0; ð23Þ
where q ¼~u � ~N (q can be any quantity to be extended so that oq=o~N ¼ 0), s is a pseudo-time, and Sð~xÞ is the
sign function defined as
Sð~xÞ ¼
1; if ~x 2 X

0; if ~x 2 oX

�1; if ~x 62 X

8><
>: ð24Þ
Note that ~N (the normal to the interface oX) points into X. If q on the interface is used as the initial condition
for Eq. (23), then the steady solution is the extension of q off the interface, which satisfies oq=o~N ¼ 0.

We use a second-order ENO scheme to discretize the spatial derivative in Eq. (23), and the forward Euler
scheme for the temporal derivative. Following [18], the discretized form of Eq. (23) in 2D Cartesian coordi-
nates is
qnþ1
ij ¼ qn

ij � DsfðSN xÞþij D�x qij þ ðSNxÞ�ij Dþx qij þ ðSN yÞþij D�y qij þ ðSNyÞ�ij Dþy qijg
n ð25Þ
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where ðxÞþ ¼ maxðx; 0Þ, ðxÞ� ¼ minðx; 0Þ, and Dþx and D�x are ENO operators for calculating the first deriva-
tive with respect to x in the forward and backward directions, respectively. No smoothing parameter is used to
discretize Sð~xÞ.

Eq. (23) is solved locally at each point where ~N is defined. As previously mentioned, we use a WENO
scheme to discretize Eq. (15), which requires a 6-cell stencil (three upstream and two downstream of a cell).
Therefore, as shown in Fig. 2, we solve Eq. (23) on a 6 · 6 ‘‘extension stencil’’ centered at any point around
which ~u � ~N is to be extended.

Eq. (23) requires normals to indicate the direction of information flow. However, since normals are only
defined in a band around the interface, there can be some grid points in an extension stencil that have no nor-
mal vector (see Fig. 2). Also, as an interface moves, points which were originally outside the band require an

initial value of ~N . We assign normal vectors to these points by extending ~N , using the same PDE (23) for the
components of ~N : we first copy the normals in the band to the points outside in order to obtain an initial guess
of an ~N field. Then Eq. (23) is solved, but after each iteration we update normals at the points where ~N was not
originally defined. Once normals are fully extended in the stencil (steady solution), they are then utilized as the
direction for extending ~u � ~N .

Note that as an alternative to copying the normals, one could extrapolate them to the points outside the
band. This could be done by using the algebraic properties of ~N , where in 2D, for example,
o
2/

oxoy
¼ oN x

oy
¼ oN y

ox
ð26Þ
Finally, the following are a few remarks on the extension algorithm:

� The quality of the solution to Eq. (23) for extending~u � ~N is directly related to how well we satisfy Eq. (18).
As mentioned before, satisfying Eq. (18) is similar to reinitialization in the LS method. If reinitialization is
done by solving Eq. (11), errors (residuals) in the steady solution, which are inevitable, result in the distor-
tion of the LS contours and consequently lead to violation of mass conservation. In the proposed method,
errors in the steady solution of Eq. (23) have no effect on mass conservation.
� In the hyperbolic PDE (23), ~N plays the role of a characteristic velocity, the magnitude of which is unity,
j~N j ¼ 1. When solving Eq. (23), given the mesh size, we choose the pseudo-timestep such that the Courant
number is 0.25.
� In instances where the interfaces are under-resolved or merging, there will exist normals in an extension

stencil that are associated with different interfaces. In this case, if one uses all of the normal vectors in
the stencil as the initial condition without concern for which interface they belong to, then one may not
obtain a steady or meaningful solution to Eq. (23). The initial condition must include only those normals
which are associated with a single interface.

4. Results

The remainder of this paper presents the results of tests of the new methodology, which we denote as the ‘‘~N
method’’. Using a uniform mesh, we consider only test cases where the velocity fields are prescribed. The
results of the ~N method are compared with results obtained from the VOF and LS functions. Note that
the only difference lies in the approach to calculating n̂.

We also present errors in the volume fraction field:
l1 ¼ max
j
jðF � F exactÞjj ð27Þ

l1 ¼
1

N

XN

j¼1

jðF � F exactÞjj ð28Þ
These errors are calculated over all cells in the computational domain, not just the interface cells. Note that the
mass is exactly conserved in the relevant cases.
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4.1. Static circle test

First, we return to the problem of Section 2.3. Table 6 presents the errors associated with j calculated from
~N that are exactly specified. As one would expect, the curvatures are second-order accurate and dramatically
better than the curvatures calculated from either the VOF (Table 2) or LS (Table 5) functions.

4.2. Translation test

Consider the translation of a circle of radius 0.15 centered initially at (0.25, 0.5) in a 1 · 1 domain (Fig. 3a);
the velocity field is (u,v) = (1, 0). The circle is advected to (0.75,0.5) at different mesh resolutions; the Courant
number is always 0.125. We study cases where n̂ and j are calculated from the VOF and LS functions, and
compare these with results of the ~N method.

Table 7 shows the errors associated with n̂ and j at the end of translation. As Table 7, Panel A shows,
the normals calculated from the VOF function do not converge, and curvature errors grow with mesh
refinement, similar to what was observed in the static circle test in Section 2.3. When the LS function
is used (Table 7, Panel B), n̂ converges and is first-order accurate; however, the l1 errors of j increase
with mesh refinement while, similar to the static circle test, l1 errors remain almost constant. The points
where curvature error is maximum lie on the leading edge of the circle, approximately along �45� diag-
onals. Table 7, Panel C presents errors when the ~N method is used. Both n̂ and j converge with almost
second-order accuracy.

The final location of the circle and the corresponding volume fractions are exactly known, and are used to
calculate the errors associated with the volume fractions at the end of translation (Table 8). For all methods,
the volume fraction errors decrease with mesh refinement; however, when the ~N method is used (Table 8, Panel
C), the errors are smaller and the convergence rate is slightly faster.

4.3. Rotation test

Consider a circle of radius 0.15 centered at (0.75,0.5) in a 1 · 1 domain (Fig. 3b). An angular velocity x = 1
is specified about (0.5,0.5). The circle is advected 2p radians at different mesh resolutions, at a maximum Cou-
rant number of p/50. Again, we study cases where n̂ and j are calculated from the ~N method and from the
VOF and LS functions.

Table 9 shows the errors associated with n̂ and j at the end of one rotation. Again, when the VOF function
is used (Table 9, Panel A), the normals do not converge, and the curvature errors grow with mesh refinement.
The LS function yields normals which are first-order accurate (Table 9, Panel B); the errors associated with j
Table 6
The errors associated with curvatures calculated by the ~N method, for a circle of radius 0.15 centered at (0.5,0.5) in a 1 · 1 domain, at
different mesh resolutions

Dx l1 Order l1 Order

1/16 3:87� 10�1 2:11� 10�2

1.72 1.73
1/32 1:18� 10�1 6:33� 10�2

2.11 2.20
1/64 2:73� 10�2 1:38� 10�2

2.07 1.94
1/128 6:51� 10�3 3:60� 10�3

1.95 2.03
1/256 1:68� 10�3 8:83� 10�4

1.97 2.00
1/512 4:29� 10�4 2:21� 10�4

2.02 2.01
1/1024 1:06� 10�4 5:50� 10�5



Fig. 3. Interface geometry and normal vectors ~N in (a) translation and (b) rotation of a circle when the ~N method is used. Dx = 1/32.
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remain almost constant with mesh refinement. As Table 9, Panel C shows, when the ~N method is used, the
normals are second-order accurate, and curvatures converge with a good order of accuracy, although not
quite at second-order.

The errors associated with the volume fractions at the end of one rotation are presented in Table 10. All
errors decrease with refinement; however, the magnitudes are smaller when the ~N method is used.

4.4. Shrinking/expanding circle test

Next, we consider shrinking and expanding a well resolved circle, and expanding a poorly resolved circle. In
each case, we use the ~N method and the VOF and LS functions to calculate n̂, and we study the errors asso-
ciated with n̂, j and the volume fractions.

First, consider a circle of radius 0.25 centered at ðxc; ycÞ ¼ ð0:5; 0:5Þ in a 1 · 1 domain. The following veloc-
ity field is specified in the domain:



Table 7
The errors associated with n̂ and j calculated from (Panel A) the VOF function, (Panel B) the LS function and (Panel C) the ~N method, for
a circle of radius 0.15 after being translated at an x-velocity of 1 for 0.5 at a Courant number of 0.125

Dx n̂ j

l1 Order l1 Order l1 Order l1 Order

Panel A

1/32 1:397� 10�1 4:65� 10�2 2.275 0.996
0.24 0.24 �0.70 �0.55

1/64 1:184� 10�1 3:95� 10�2 3.730 1.460
�0.02 0.10 �1.12 �0.80

1/128 1:203� 10�1 3:69� 10�2 8.060 2.540

Panel B

1/32 2:746� 10�1 5:30� 10�2 5.753 1.561
0.75 1.26 �0.76 0.19

1/64 1:638� 10�1 2:22� 10�2 9.775 1.370
0.90 1.18 �0.41 0.04

1/128 8:80� 10�2 9:82� 10�3 12.986 1.332

Panel C

1/32 1:359� 10�1 2:96� 10�2 3.340 0.527
1.63 1.72 1.83 1.44

1/64 4:44� 10�2 9:00� 10�3 0.941 0.194
1.87 1.63 1.87 1.35

1/128 1:20� 10�2 2:91� 10�3 0.258 0.076

The circle is initially centered at (0.25,0.5) in a 1 · 1 domain.

Table 8
Volume fraction errors in the translation test; normals n̂ are calculated from (Panel A) the VOF function, (Panel B) the LS function and
(Panel C) the ~N method

Dx l1 Order l1 Order

Panel A

1/32 8:67� 10�2 6:92� 10�4

0.18 1.83
1/64 7:66� 10�2 1:94� 10�4

0.91 2.05
1/128 4:07� 10�2 4:70� 10�5

Panel B

1/32 1:68� 10�1 1:04� 10�3

0.86 1.95
1/64 9:23� 10�2 2:69� 10�4

0.46 2.43
1/128 6:73� 10�2 5:0� 10�5

Panel C

1/32 5:08� 10�2 4:10� 10�4

0.60 1.90
1/64 3:36� 10�2 1:10� 10�4

1.23 2.46
1/128 1:43� 10�2 2:0� 10�5
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uðx; yÞ ¼ � x� xcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xcÞ2 þ ðy � ycÞ

2
q ð29Þ

vðx; yÞ ¼ � y � ycffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xcÞ2 þ ðy � ycÞ

2
q ð30Þ



Table 9
The errors associated with n̂ and j calculated from (Panel A) the VOF function, (Panel B) the LS function and (Panel C) the ~N method, for
a circle of radius 0.15 after being rotated for 2p radians at an angular velocity of 1 and at a maximum Courant number of p=50

Dx n̂ j

l1 Order l1 Order l1 Order l1 Order

Panel A

1/32 1:464� 10�1 5:16� 10�2 2.155 0.837
0.26 0.31 �0.94 �0.75

1/64 1:226� 10�1 4:17� 10�2 4.127 1.408
�0.02 0.09 �1.01 �0.91

1/128 1:243� 10�1 3:93� 10�2 8.330 2.653

Panel B

1/32 1:662� 10�1 3:35� 10�2 3.256 0.571
1.19 1.38 �0.43 �0.27

1/64 7:28� 10�2 1:29� 10�2 4.388 0.690
1.09 1.59 0.41 0.51

1/128 3:41� 10�2 4:28� 10�3 3.296 0.485

Panel C

1/32 1:506� 10�1 4:36� 10�2 1.867 0.408
3.09 2.81 2.87 2.54

1/64 1:77� 10�2 6:20� 10�3 0.256 0.070
2.11 2.41 0.85 1.22

1/128 4:11� 10�3 1:17� 10�3 0.142 0.030

The circle, initially centered at (0.75,0.5) in a 1 · 1 domain, rotates around the centre of the domain.

Table 10
Volume fraction errors in the rotation test; normals n̂ are calculated from (Panel A) the VOF function, (Panel B) the LS function and
(Panel C) the ~N method

Dx l1 Order l1 Order

Panel A

1/32 1:783� 10�1 2:85� 10�3

0.53 1.91
1/64 1:231� 10�1 7:59� 10�4

0.24 1.64
1/128 1:039� 10�1 2:44� 10�4

Panel B

1/32 2:376� 10�1 2:90� 10�3

1.36 1.93
1/64 9:24� 10�2 7:59� 10�4

0.59 2.07
1/128 6:15� 10�2 1:81� 10�4

Panel C

1/32 1:125� 10�1 1:81� 10�3

0.76 1.72
1/64 6:65� 10�2 5:49� 10�4

0.82 1.86
1/128 3:77� 10�2 1:51� 10�4
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This is a radial velocity with a magnitude of one (ur ¼ �1) which shrinks the circle; see Fig. 4a. Since r �~u 6¼ 0
at (xc,yc), we modified the volume advection algorithm in the vicinity of (xc,yc). The interface is advected until
t = 0.125, and the Courant number is 0.25.

Table 11 presents errors associated with n̂ and j for different methods. Again, we see that the VOF function
yields non-converging normals, and the errors in curvatures grow with refinement (Table 11, Panel A). As



Fig. 4. Interface geometry and normal vectors ~N for (a) a shrinking and (b) an expanding circle, when the ~N method is used. Dx = 1/32,
Dt = 1/128.

Table 11

The errors associated with n̂ and j for a shrinking circle; normals n̂ are calculated from (Panel A) the VOF function, (Panel B) the LS function and (Panel C)

the ~N method

Dx n̂ j

l1 Order l1 Order l1 Order l1 Order

Panel A

1/32 8:28� 10�2 3:32� 10�2 1.335 0.689

�0.41 �0.42 �0.95 �1.12

1/64 1:098� 10�1 4:45� 10�2 2.579 1.499

0.11 0.31 �1.44 �0.79

1/128 1:019� 10�1 3:58� 10�2 6.982 2.596

�0.03 �0.05 �1.29 �0.93

1/256 1:039� 10�1 3:70� 10�2 17.031 4.947

Panel B

1/32 5:32� 10�2 2:11� 10�2 1.338 0.507

1.18 1.93 0.18 0.80

1/64 2:35� 10�2 5:54� 10�3 1.182 0.291

1.49 1.48 1.06 0.56

1/128 8:36� 10�3 1:99� 10�3 0.567 0.197

0.87 1.12 0.23 �0.11

1/256 4:56� 10�3 9:15� 10�4 0.485 0.213

Panel C

1/32 2:13� 10�2 6:12� 10�3 0.656 0.333

1.96 1.48 2.13 1.84

1/64 5:48� 10�3 2:19� 10�3 0.150 0.093

1.58 1.57 1.56 1.63

1/128 1:83� 10�3 7:39� 10�4 0.051 0.030

1.95 1.84 1.28 1.91

1/256 4:73� 10�4 2:06� 10�4 0.021 0.008
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expected, the normals calculated from the LS function are first-order accurate (Table 11, Panel B), but the
curvature errors remain constant with refinement. As Table 11, Panel C shows, the ~N method yields sec-
ond-order normals, and curvatures that converge with a good order of accuracy.

The volume fraction errors of the circle at t = 0.125 are presented in Table 12. When n̂ is calculated from
the VOF function, the l1 errors vary little at different mesh resolutions, although the l1 errors converge. These
errors decrease with mesh refinement when n̂ is calculated from the LS function or the ~N method. However,
when the ~N method is used, the volume fractions are most accurate.

Now, consider an expanding circle (ur = 1) of initial radius 0.125 centered at (0.5,0.5); see Fig. 4b. Again,
the interface is advected until t = 0.125, and the Courant number is 0.25. Table 13 shows the errors associated
with n̂ and j at t = 0.125. The results from the VOF and LS functions are as before: non-converging normals
and diverging curvatures from the VOF function, and first-order accurate normals and non-converging cur-
vatures from the LS function. However, we see from Table 13, Panel C that the convergence rate of normals
calculated by the ~N method is now reduced to first-order. Furthermore, curvatures do not converge as well as
before, and there is an anomaly in the l1 error at Dx = 1/128; the error arises at interfacial cells located along
�25� and �155� diagonals.

The reason for this change in accuracy is that, unlike the normals from the VOF or LS functions, there is a
time history associated with normals when the ~N method is employed. The accuracy of normals at a given
timestep depends on the accuracy at the previous timestep(s), whereas when the VOF or LS functions are used,

new normals are calculated at each timestep. Thus, if ~N is initially inaccurate, subsequent values of ~N will
reflect this inaccuracy. In the case of the expanding circle, the normals are advected from a small, not-well-
resolved circle to a large one; thus, the accuracy of normals (and curvatures) on the expanded circle are only
as good as the ones defined on the initial circle.

In the extreme case, we study the expansion of a very poorly resolved circle for t = 0.125. The radius of
the circle is initially 0.02, resolved by Dx = 1/32; thus, the circle is defined within a 2 · 2 stencil about a
Table 12
The errors associated with volume fractions for a shrinking circle; normals n̂ are calculated from (Panel A) the VOF function, (Panel B) the
LS function and (Panel C) the ~N method

Dx l1 Order l1 Order

Panel A

1/32 2:84� 10�2 4:14� 10�4

0.36 1.41
1/64 2:21� 10�2 1:66� 10�4

�0.35 1.20
1/128 2:82� 10�2 7:24� 10�5

0.15 1.11
1/256 2:54� 10�2 3:36� 10�5

Panel B

1/32 2:98� 10�2 4:10� 10�4

1.41 2.08
1/64 1:12� 10�2 9:67� 10�5

0.71 2.04
1/128 6:87� 10�3 2:35� 10�5

0.79 2.06
1/256 3:97� 10�3 5:62� 10�6

Panel C

1/32 1:83� 10�2 2:84� 10�4

1.05 2.39
1/64 8:86� 10�3 5:43� 10�5

0.87 1.85
1/128 4:85� 10�3 1:51� 10�5

0.92 1.94
1/256 2:57� 10�3 3:93� 10�6



Table 13
The errors associated with n̂ and j for an expanding circle; normals n̂ are calculated from (Panel A) the VOF function, (Panel B) the LS
function and (Panel C) the ~N method

Dx n̂ j

l1 Order l1 Order l1 Order l1 Order

Panel A

1/32 1:271� 10�1 4:16� 10�2 1.173 0.679
0.32 0.22 �1.59 �0.99

1/64 1:015� 10�1 3:57� 10�2 3.527 1.347
�0.02 �0.07 �1.21 �0.88

1/128 1:028� 10�1 3:74� 10�2 8.180 2.479
�0.05 0.05 �1.06 �0.87

1/256 1:061� 10�1 3:62� 10�2 17.070 4.521

Panel B

1/32 1:59� 10�2 6:29� 10�3 0.386 0.127
0.44 0.93 0.11 �0.48

1/64 1:17� 10�2 3:29� 10�3 0.358 0.177
1.27 1.24 �0.20 0.31

1/128 4:86� 10�3 1:39� 10�3 0.410 0.143
0.87 1.25 �0.07 0.25

1/256 2:65� 10�3 5:83� 10�4 0.429 0.120

Panel C

1/32 4:97� 10�3 1:83� 10�3 0.075 0.041
0.93 1.09 0.84 0.83

1/64 2:60� 10�3 8:61� 10�4 0.042 0.023
1.13 1.23 �0.13 1.06

1/128 1:19� 10�3 3:67� 10�4 0.046 0.011
1.41 1.00 1.62 1.14

1/256 4:47� 10�4 1:83� 10�4 0.015 0.005
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cell vertex at (0.5,0.5). The results are displayed in Fig. 5. When the VOF or LS functions are used
(Fig. 5a and b), the expanded circles are relatively round; however, with the ~N method, the final geometry
is deformed and asymmetric; see Fig. 5c. The deformed circle is horizontally symmetric, but the vertical
asymmetry is due to the algorithm for extending normals when solving for the evolution of ~N : ~Nx is
extended first, and then ~N y (the asymmetry is developed even if the order is alternated). The errors asso-
ciated with the volume fractions of the expanded circle are presented in Table 14. As expected from
Fig. 5, the volume fractions are the least accurate when the ~N method is used; the best result is obtained
from the LS function.

At this resolution, the poorly resolved circle is initially reconstructed as a diamond (Fig. 5). This test then
reveals a weakness of the ~N method in dealing with corners. A normal to a corner is mathematically undefined.
However, numerically, at a point equidistant from both sides of a sharp corner, ~N can point to one side or the
other, or can lie along the bisector. The latter, which gives a smooth variation of ~N , is ideal, and can be ini-
tialized but not necessarily maintained when solving for the evolution of ~N . Depending on which side of a
corner ~N points to, the evolution of ~N , and thus the shape of the interface, will be different. A remedy for this
issue might be to use normals from the VOF function at early stages of interface evolution. Once the circle
expanded to some minimum resolution (mesh per radius), one could then switch to the ~N method and at
the transition, use normals calculated from the VOF function as the initial condition for the evolution equa-
tion of ~N .

4.5. Vortex test

Finally, we consider a problem that includes shear. The following velocity field is specified in a 1 · 1
domain:



Fig. 5. Expansion of a poorly resolved circle when (a) VOF function, (b) LS function and (c) ~N is used for calculating n̂. Rinitial ¼ 0:02,
Dx = 1/32.

Table 14
The errors associated with volume fractions when a poorly resolved circle is expanded

l1 l1

VOF 5:15� 10�2 8:90� 10�4

LS 1:85� 10�2 2:94� 10�4

~N 1:37� 10�1 1:78� 10�3
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u ¼ sin2ðpxÞ sinð2pyÞ ð31Þ
v ¼ � sin2ðpyÞ sinð2pxÞ ð32Þ
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A circle of radius 0.15 is initially placed at (0.5,0.75); see Fig. 6. The circle is advected to t = 1; then the
sign of the velocity field is reversed and advection continues to t = 2, at which point the circle should return
to its initial configuration. Using the ~N method, the VOF and LS functions to calculate n̂, tests were per-
formed at two mesh resolutions: 15 cells per radius (cpr) and 30 cpr, at a maximum Courant number of 0.1.
The results are presented in Figs. 6–8. The errors associated with volume fractions at t = 2 are also pre-
sented in Table 15.
Fig. 6. The evolution of a circle in a vortex field at (a) 15 and (b) 30 cells per radius when the VOF function is used to calculate n̂.



Fig. 7. The evolution of a circle in a vortex field at (a) 15 and (b) 30 cells per radius when the LS function is used is used to calculate n̂.
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As the figures and Table 15 show, the best result is obtained when using the LS function. The results
from the ~N method (Fig. 8) are promising, although the circles at t = 2 are not as round as we might wish.
The reason is related to what happens at the tail, shown at t = 1 in Fig. 9 in a close-up view: a corner
forms, which has no clear normal vector. Furthermore, the interface near the tail is relatively poorly
resolved, and as the interfaces on either side approach each other, the normal vectors vary sharply across
one cell. When the velocity field reverses, the tail expands, and the inaccurate normals near the tail ‘‘pol-
lute’’ subsequent normals and eventually lead to the deformed circle at t = 2, similar to the expansion of
the poorly resolved circle.



Fig. 8. The evolution of a circle in a vortex field at (a) 15 and (b) 30 cells per radius when the ~N method is used.
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Again, a solution to this problem would be to locally use the VOF function to calculate n̂ in poorly
resolved areas where ~N varies sharply. Once a minimum resolution required for a smooth variation of ~N
exists, one could then switch to the ~N method. We tried this for the vortex test at 15 cpr: normals n̂ were
calculated from the ~N method except during 0.7 6 t 6 1.3, when the VOF function was used. At t = 1.3,
normals calculated from the VOF function were used as the initial condition for the ~N method. The results
improved significantly, as the l1 and l1 errors were reduced to 0.665 and 2:38� 10�3, respectively. This sug-
gests that for satisfactory performance the ~N method requires a minimum resolution in areas where normals
vary sharply.



Table 15
The errors associated with volume fractions in the vortex test at t = 2 when normals n̂ are calculated from (Panel A) the VOF function,
(Panel B) the LS function and (Panel C) the ~N method

Dx l1 l1

Panel A

1/100 0.433 1:70� 10�3

1/200 0.416 3:18� 10�4

Panel B

1/100 0.302 1:31� 10�3

1/200 0.259 1:00� 10�4

Panel C

1/100 1 4:0� 10�3

1/200 0.971 1:57� 10�3

Fig. 9. A close-up view of the tail of a deformed circle in a vortex field, when the ~N method is used. Time t = 1, resolution is 30 cells per
radius.
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5. Summary and conclusions

It has been shown that the accuracy of curvatures calculated from the VOF function deteriorates with mesh
refinement, and that there is a constant error associated with curvatures calculated from the LS function in a
coupled LS and VOF method, irrespective of mesh refinement. A new methodology for calculating interface
normal vectors and curvatures is proposed, in which the normal vectors are advected along with the interface,
and the curvatures are calculated directly from the advected normals.

The new methodology has been incorporated into a volume-conserving VOF method, where the advected
normals are employed for interface reconstruction. The normals are initialized as unit vectors and via an
extension algorithm applied at each timestep they remain unit vectors. This is similar to reinitializing the dis-
tance function in the LS method. However, unlike the LS method, volume conservation does not depend on
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the extent to which this condition is satisfied. Via a series of test cases, it has been shown that the method is
second-order accurate when calculating interface normals, and that it yields curvatures that converge with a
good order of accuracy. Although the evolution of normals and volume fractions are solved via separate equa-
tions, the test results show that there is no decoupling between normals and volume fractions. Furthermore,
compared to using the VOF or LS functions to calculate normals, it has been shown that the new methodology
yields volume fractions more accurately. This must be due to the more accurate normals provided by the new
method.

The new methodology has some drawbacks: when an interface develops a corner, or when it is under-
resolved or near another interface, the normal vectors are poorly defined and/or vary sharply. Since the
new method advects normals in time, inaccurate normals associated with poorly resolved interfaces will affect
the accuracy of normals later in the calculation. A potential remedy is to locally use the VOF function to cal-
culate normals in poorly resolved areas, and then switch to the new methodology once a minimum resolution
exists. At transition, the normals calculated from the VOF function are used as the initial condition for the
advection equation of ~N . However, such an approach requires further study. The other drawback lies with
the extension algorithm used to satisfy Eq. (18). This algorithm is computationally expensive. For example,
when the VOF function was used to calculate normals, the translation test (Section 4.2) took 2 min at
Dx = 1/64; the new methodology required 13 min. Other algorithms [36,37] will be implemented to try to
reduce the computation time.

Finally, the new methodology has been successfully implemented and used to simulate actual flow prob-
lems; these results will be presented in another article. And the extension of the new method to 3D is
straightforward.
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